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Abstract. Here we suggest and have exemplified a simple scheme for reconstruction of a plane
curve if its curvature belongs to the class specified in the title by deriving explicit parametrization of
Bernoulli’s lemniscate and newly introduced co-lemniscate curve in terms of the Jacobian elliptic
functions. The relation between them and with the Bernoulli elastica are clarified.
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INTRODUCTION

The most fundamental existence and uniqueness theorem in the theory of plane curves
states that a curve is uniquely determined (up to Euclidean motion) by its curvature
given as a function of its arc-length (see [1, p. 296] or [8, p. 37]). The simplicity of the
situation however is quite elusive because in many cases it is impossible to find the
sought-after curve explicitly. Having this in mind, it is clear that the situation is even
more complicated if the curvature is given as a function of its position. Viewing the
Frenet-Serret equations as a fictitious dynamical system it was proven in [10] that when
the curvature is given just as a function of the distance from the origin the problem
can always be reduced to quadratures. The cited result should not be considered as
entirely new because Singer [9] had already shown that in some cases it is possible
that such curvature gets an interpretation of a central potential in the plane and therefore
the trajectories could be found by the standard procedures in classical mechanics. The
approach which we will follow here, however is entirely different from the group-
theoretical [10] or mechanical one [9] proposed in the above cited papers. The method is
illustrated on the most natural examples in the class of curves whose curvatures depend
solely on the distance from the origin. Here we consider the case in which the function
in question is

κ = σr, r = |x|=
√

x2 + z2 (1)

where x,z are the Cartesian coordinates in the plane XOZ which have to be considered as
functions of the arc-length parameter s, and σ is assumed to be a positive real constant.
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THE FRENET-SERRET EQUATIONS

If θ(s) denotes the slope of the tangent to the curve with respect to the OX axis one has
the following geometrical relations

dθ(s)
ds

= κ(s),
dx
ds

= cosθ(s),
dz
ds

= sinθ(s) (2)

which can be deduced also from the Frenet-Serret equations (see also Fig. 1)

dx(s)
ds

= T(s),
dT
ds

= κN,
dN
ds

=−κT (3)

in which T and N are respectively the tangent and the normal vector to the curve and s
is the natural parameter along the curve. Combining (1) and (2) produces

dθ(s)
ds

= κ(r) (4)

which in our cases leads definitely to quite unpromising equations. We will proceed (as
suggested but not pursued in [9]) by going to the co-moving frame associated with the
curve

x = ξ T+ηN (5)

and accordingly the Frenet-Serret equations (3) now read

dξ
ds

= ξ̇ = κη +1,
dη
ds

= η̇ =−κξ . (6)

FIGURE 1. Geometry of the plane curve.

INTEGRATION

Multiplying the first equation in (6) by ξ , the second one by η and summing the so
obtained expressions we find that

ξ = rṙ (7)
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where the dot means a differentiation with respect to the arc-length parameter. Substi-
tuting this expression back into equation (6) and integrating we obtain

η =−
∫

κ(r)rdr+ c (8)

where c is the integration constant. One should notice however (cf. equation (5)) that the
coordinates in the moving frame are not entirely independent but obey to the constraint

ξ 2 +η2 = r2 (9)

which in view of the equations (7) and (8) presents an ordinary differential equation for
the radial coordinate.

BERNOULLI’S LEMNISCATE

This curve being a special case (when a ≡ c) of the Cassinian ovals [5]

(x2 + z2)2 −2a2(z2 − x2)+a4 − c4 = 0 (10)

has a curvature which is linear in r. Inserting κ = σr into equation (8) produces

η =−σr3

3
(11)

(the integration constant is taken to be zero) and the scheme from the previous section
leads to the equation

dr
ds

=

√
1− σ2r4

9
· (12)

Its integration is immediate and gives

r =

√
3
σ

cn(

√
2σ
3

s,
1√
2
) (13)

where cn(u,k) denotes one of the Jacobian elliptic functions in which the first slot is
occupied by its argument and the second one by the so called elliptic modulus (a real
number between zero and one). More details about elliptic functions and integrals can
be found in [3] and [7]. Entering with this solution into equations (7) and (11) has as a
result

ξ = −
√

6
σ

cn(

√
2σ
3

s,
1√
2
)dn(

√
2σ
3

s,
1√
2
)sn(

√
2σ
3

s,
1√
2
)

(14)

η = −
√

3
σ

cn3(

√
2σ
3

s,
1√
2
).
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Written in terms of its components equation (5) tells us that the lemniscate coordinates
x,z are obtained from ξ ,η via a plane rotation specified by the slope angle θ , i.e.,

x = ξ cosθ −η sinθ , z = ξ sinθ +η cosθ . (15)

Obviously, what remains to be done is to find θ that can be furnish via an integration of
the first equation in (2). In this way we obtain

θ = 3arccos(dn(

√
2σ
3

s,
1√
2
)) = 3arcsin(k sn(

√
2σ
3

s,
1√
2
)). (16)

Now we have to take into account the trigonometric identities

sin3φ = 3sinφ −4sin3 φ, cos3φ = 4cos3 φ −3cosφ (17)

which give

sinθ =
3√
2

sn(

√
2σ
3

s,
1√
2
)−

√
2sn3(

√
2σ
3

s,
1√
2
)

(18)

cosθ = 4dn3(

√
2σ
3

s,
1√
2
)−3dn(

√
2σ
3

s,
1√
2
)

and eventually provide the parametrization of the Bernoullian lemniscate. By mak-
ing repeating use of the fundamental identities, which the Jacobian elliptic functions
sn(u,k),cn(u,k) and dn(u,k) obey, i.e.,

sn2(u,k)+ cn2(u,k) = 1, dn2(u,k)+ k2 sn2(u,k) = 1 (19)

it is possible to simplify the expressions for x and z into the form

x =

√
3

2σ
cn(

√
2σ
3

s,
1√
2
)sn(

√
2σ
3

s,
1√
2
)

(20)

z = −
√

3
σ

cn(

√
2σ
3

s,
1√
2
)dn(

√
2σ
3

s,
1√
2
).

The properties of the Jacobian functions make obvious also the relations

η2 =
(σ

3

)2
(ξ 2 +η2)3, z2 − x2 =

σ
3
(
x2 + z2)2

(21)

and the last one is just the standard form of the Bernoulli’s lemniscate (cf. equation
(10)). In polar coordinates ξ = r cosψ , η = r sinψ , x = r cosϕ , z = r sinϕ the above
algebraic curves of degree six, respectively four, take the forms

sinψ =−σ
3

r2, cos2ϕ =−σ
3

r2. (22)
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This remarkable similarity of their polar representation suggests to calculate the curva-
ture of the co-lemniscate. The most convenient method in this situation seems to be the
application of the formula

κ =
|r2 +2ṙ2 − rr̈|
(r2 + ṙ2)3/2 (23)

in which this time the dots denote differentiations with respect to the polar angle. By
straightforward but tedious calculations one ends with the formula

κ =
2σr

(
σ2r4 +9

)
√

3(σ2r4 +3)3/2 · (24)

Regardless of how similar to the lemniscate seems to be this curve in the polar coordi-
nates its curvature is quite different from that of the parent curve. Both curves are plotted
for illustration in Fig. 2.

FIGURE 2. The Bernoullian co-lemniscate (left), Bernoulli’s lemniscate (middle) and both of them
(right) drawn via formulas (14) and (20) with σ = 3.5.

Remark. Because of the relation between the radial coordinate r and the curvature
equation (12) can be rewritten into the form

κ̇2 +
κ4

9
= σ2 (25)

which can be recognized and referred further on as the intrinsic equation of the
Bernoulli’s lemniscate.

THE LEMNISCATE AND BERNOULLI’S ELASTICA

We will end this paper by outlining the relation of the Bernoulli lemniscate to another
famous curve invented by Bernoulli - the so called free (or rectangular) elastica [2] which
appears also as a profile curve of the Mylar balloon [6].
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For that purpose, let us differentiate (25) which gives

κ̈lemn +
2
9

κ3
lemn = 0 (26)

and presents another form of the intrinsic equation of the lemniscate. By comparing it
with the intrinsic equation of the free elastica

κ̈elas +
1
2

κ3
elas = 0 (27)

it is easy to conclude that one can pass from one to the other by the following transfor-
mation

κlemn =
3
2

κelas (28)

which has been noticed also recently by Matsutani [4]. Actually, the mathematical reason
is that the curvature of the Bernoulli elastica is also a linear function of the distance but
in this case - from the OX axis.
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3
the

generalized Sturmian spirals resembles the ordinary ones. When σ > 2√
3

the curve is

finite and bounded and lies between two circles centered at the origin. For σ = 2√
3

the

polar angle between the initial and the end point is exactly π and for σ > 2√
3

it is given
by the formula σπ√

σ2−1
. Due to the lack of space we cannot provide the full details here

but we hope to be able to report on this subject soon elsewhere.
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