courbe suivante courbe précédente courbes 2D courbes 3D surfaces fractals polyèdres

QUARTIQUE PIRIFORME
Piriform, Birnkurve
Poire ou goutte d'eau ?

Courbe étudiée par Wallis en 1685 et Bonnet en 1844.
Du latin Pirum  "poire".
Autres nom : goutte d’eau, toupie.

 
Équation cartésienne :  , ou .
Pour b = a / 2, l'équation se met sous la forme :.
Paramétrisation cartésienne : , avec 
Quartique rationnelle.
Aire : 

 
Un point P décrivant le cercle (C) de diamètre [OA] (où A est le point de coordonnées (a, 0)), soit Q le point de la droite x = b de même ordonnée que P ; la quartique piriforme est le lieu du point M de la droite (OQ) ayant même abscisse que P.

Autrement dit, les quartiques piriformes sont les antihyperbolismes du cercle par rapport à un point O de ce cercle et une droite perpendiculaire au diamètre d’extrémité O.

Remarquons que les quartiques piriformes pour b quelconque sont des dilatées suivant Oy de la courbe obtenue pour a = b.
Ce sont des cas particuliers de larmes.

Un tube d'âme une quartique piriforme est une représentation de la bouteille de Klein.

Voir aussi la double goutte d'eau, les kiéroïdes, et les cycloïdes sphériques.

Voir aussi ici le "vrai" profil de la goutte d'eau.
 

 
courbe suivante courbe précédente courbes 2D courbes 3D surfaces fractals polyèdres

© Robert FERRÉOL 2011