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Abstract

Parametrization of the G triply periodic minimal surface, found in many physical, chemical and biological systems, has
allowed us to calculate its coordinates analytically, and fully to describe its properties, such as the surface-to-volume ratio.
Real structures may now be quantitatively compared with the precise coordinates and quantified in terms of the surface

parameters. © 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

A minimal surface is a surface which has a mini-
mum areawith zero mean curvature H = (k, + k,) /2
at every point, where k;, and k, are the principal
curvatures [1]. A triply periodic minimal surface
(TPMS) is a minimal surface which is periodic in
three independent directions. When it is free of
self-intersections it is said to be embedded. TPMS
are described in terms of a fundamental patch
(‘ Flachenstiick’) or asymmetric unit from which the
entire surface may be built up by its symmetry
elements.

Omnipresent in the natural and man-made worlds,
TPMS provide concise, unified descriptions of seem-
ingly unrelated structures [2], and are of interest not
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only to the structural chemist, but also in biology and
morphogenesis [3], structural engineering and the
science of materials [4], and are echoed in art and
architecture [5]. Structural features of the G surface
(also known as the gyroid) [6] have been found by
X-ray diffraction in bicontinuous cubic systems in
AB diblock copolymers [7], in lecithin—water and
lipid—water systems [8], and in many other systems
at high surfactant concentrations. The G surface
separates the two networks postulated for the struc-
ture of strontium myristate [8], and is also found in
TagCl,5 [9]. The gyroid phase is usudly found in
phase diagrams between the hexagonal and lamellar
mesophases. The topological analogue of the G sur-
face is the Y** periodic zero equipotential surface
[10] found in compounds with the Cay[Al,Si;0;,]
garnet structure, which have applications in optoel ec-
tronic colour displays and the memory of magnetic
bubbles in epitaxia garnet films [11]. Cell mem-
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branes in living organisms such as the endoplasmic
reticulum (where cell proteins and lipids are synthe-
sised) are known to have a complex three-dimen-
sional morphology, which correspondsto TPMS[12].

The fundamental structures identified in cellular
organella are the cubic G, D and P surfaces. The
partition of space by the surface in the organella
enables cells to control the concentrations of various
molecules and their transport across the bilayers. The
surfactant can be used as a template for polymerisa-
tion reactions where the final product is the ordered
mesoporous silica molecular sieve with well defined
pore sizes and shapes [13], or hydrogels used as
contact lenses [14]. Apart from the lamellar and
hexagonal microstructures, the bicontinuous gyroid
structure is formed. In the cetyltrimethylammonium
chloride/SiO, system for high fraction of both com-
ponents, the gyroid phase forms in which the single
infinite silicate sheet separates the surfactant into
two equal and disconnected sub-volumes. The mid
plane of the silicate sheet in the inorganic meso-
porous MCM-48 is the gyroid [15,16]. Although its
structure is amorphous on the microscopic scale, the
mid plane of the silica wall rests on the gyroid. The
structure contains a three-dimensional channel net-
work with channels running along {1, 1, 1} and {1, 0,
0} directions. The channel system in MCM-48 may
be viewed as a collection of straight pores running in
the four {1, 1, 1} directions related by the tetrahedral
angle. The two channel systems form an enantiomor-
phic pair. Channel intersections revea the spiral
nature of both right- and left-handed pore systems
with three channels spiralling around a central pore.

The fact that the G surface divides al space into
two helical regions which are mirror images of one
another is of special interest. Preparation of chiral
catalysts and separation media which combine shape
selectivity and enantioselectivity is a highly desirable
objective in view of the increasing demand for enan-
tiomerically pure compounds, especialy for biologi-
cal and pharmaceutical purposes [17]. Helical pores
in inorganic materials might be able to act as such
“chiral filters’, but their occurrence is rare [17] be-
cause helica structures (for example quartz) are
commonly generated by a uni-directional symmetry
element acting on an achiral structural subunit [18].
Amorphous silica gel, precipitated around chiral
molecules (which are subsequently removed) may

have such properties [19], but well-characterized
crystalline materials would clearly be preferable for
the purpose.

2. The Enneper—Weier strass representation

TPMS are described in terms of the fundamental
patch (‘ Flachenstiick’): the smallest portion of the
surface from which the entire surface can be con-
structed. The Enneper—Weierstrass representation
[20] gives the coordinates of a minimal surface as

x=e'Re[ " (1—7?)R(r)dr
y= eioRefwi(l-f— 2)R(7)dr

Z=ei0Refw27R(T)d7 (1)

where i?= —1 and 7=, +i7,, associating with
function R(7) (the Weierstrass function) a unique
surface r(r,, 7,) which is guaranteed to be minimal;
and 0 is the so-called Bonnet angle. The Cartesian
coordinates of any point are expressed as the real
parts (Re) of contour integrals, evaluated in the
complex plane from some fixed point w, to a vari-
able point w. A specific minimal surface can be
determined by integrating its Weierstrass function.
The integrals (1) can aways be evaluated by numeri-
cal integration, but so far could be calculated analyti-
caly for only a few surfaces [21-26].

Using the Bonnet transformation, fully described
by the Bonnet angle, we can generate from a mini-
mal surface a family of minimal surfaces with the
same metric and Gaussian curvatures. By changing 6
we obtain associate surfaces, when 6= /2, the
associate surface is known as the conjugate surface.
With respect to the D surface, the Bonnet angles are
6=90° (for the P surface) and 6 = ArcCot[ K’ /K]
= 38.0147°, where K =EllipticK[1/4] and K'=
EllipticK[3/4] (for the G surface) [6].

Although the properties of the TPMS follow
uniquely from the Weierstrass function, R(7) [23],
the function is known only for severa TPMS of
simple topology. The Welerstrass function may be
constructed if there exists a surface patch from which
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the whole TPMS can be generated by reflection or
rotation of the patch using appropriate symmetry
elements [23]. This is the case for the D, G and P
surfaces, for which the Welerstrass function is [27]

1
R(7) = —— 2
SR v @
with A = —14.

In general, the Weierstrass function is specified
solely by values of 7 which correspond to flat
(‘umbilical’) points on the minimal surface where
the Gaussian curvatureis zero, in aform IT,(r — 7,)7,
where n determines the topology of the surface.

In 1970 Schoen identified the G surface as one of
a further 17 examples of intersection-free TPMS, in
addition to the five cases aready known [6]. Its
generating space group is 14,32 and the symmetry
of the surface is 1a3d (No. 230), with 96 equivalent
positions. Consequently, it is possible to divide the
unit cell into 96 equivalent asymmetric volumes
related by the symmetry elements of its space group.
The surface embeds an inversion centre which inter-
changes the two sides of the surface and a so the two
labyrinth networks which it partitions. The labyrinths
of the G surface are 3-connected and are enantiomor-
phic: one labyrinth is left-handed, the other, right-
handed. The genus of the surface, a measure of its
connectedness, is 3. The fundamental patch of the G
surface is inscribed in a trirectangular tetrahedron, so
caled by Coxeter [28], because its face angles in-
clude three right angles (Fig. 1a). Thisis its kaleido-
scopic cell or fundamental region for groups of
reflections in %2, i.e. the convex polyhedron which
provides plane boundaries enclosing a finite minimal
surface patch which can be replicated by reflection
to yield an infinite TPM S without self-intersections.

Fig. 1. (@ The fundamental patch of the G surface shown within
its bounding cell (the cube with edge length a) is confined within
two straight lines which pass through the origin and the adjacent
diametrically opposed corners of the cube. The coordinate system
has its origin at point M, and its orientation is indicated by the
axes shown. Flat points O' and R divide the diagona M ;Mg of
the bounding cell in the 1:1 ratio. (b) Projection of the patch onto
the X'y plane showing the relationship between the x' and vy
coordinates of the points O, P and R.. (c) Projection of the patch
onto the Zx' plane showing the relationship between the x' and
Z coordinates of the points O, P and R.
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Twelve of these pieces combine to form a larger
surface piece in the hierarchy of assembly, contained
within a cube (Fig. 4a). We will refer to this cube of
side a as the bounding cell of the G patch. The G
surface is associate to both the D and P surfaces,
being related by the Bonnet angle. The boundary of
the patch of the D surface is defined by two straight
lines (Fig. 2) which are embedded 2-fold axes, and
one mirror plane curve. The converse is true for its
adjoint twin, the P surface. However the boundary of
the patch of the G surface is defined by neither
straight lines nor mirror plane curves. Variation of
the Bonnet angle produces a continuum of bent
states intermediate between the D and P surfaces.
The point-group symmetries assigned to the vertices
are preserved. However, the G surface is unique in
that these symmetry elements lock into the crystallo-
graphic space group la3d. All other patches drawn
from this continuum of states would produce sur-
faces with self-intersections if continued by these
symmetry elements. Apart from the CLP surface and
its homeomorphic adjoint, which are identical other
than having different tetragonal proportions, the P, D
and G surfaces are the only other example of inter-
section-free associate TPMS. It is considered highly
unlikely that any other intersection-free TPMS con-
taining neither straight lines nor plane lines of curva-
ture are to be found. The effect of the Bonnet
transformation is to transform the lattice of catenoidal
channelsinto helicoidal strips, through a screw oper-
ation on the whole surface. The channels in both the
P and D surfaces are transformed into spiral tunnels
in the gyroid. The P surface contains plane holes
which are almost circular in cross-section. Schwarz
showed that these have radius variations of only ca.
0.4% [29]. These holes correspond to the amost
helical geodesics on the G surface which have radius
variations with respect to cylindrical helices of only
ca. 0.5%. The four-fold screw isometries collapse to
a screw of zero pitch but finite hole diameter for P,
and reach a limit of finite pitch but zero hole diame-
ter for D. The images of these hole curves in P and
G are straight lines in D. The transformation of the
quasi-circular holes in P into straight line holes in D,
via the intermediate quasi-helical holes of the type
which appear in G, is illustrated by the example of
the line segment which is shown extending from left
to right along the central axis of the fundamental

Fig. 2. (@ A patch of the D triply periodic minima surface
(associate to G) is bounded by the edges of the O'P'Q'R’
tetrahedron. The origin of the coordinate system imposed by the
parametrization is at O” and the orientation of the axes is shown
in the inset. (b) A patch of the P triply periodic minimal surface
(associate to G and conjugate to D) is bounded by the edges of the
O”"P"Q"R" tetrahedron. The origin of the coordinate system
imposed by the parametrization is at O” and the orientation of the
axes is shown in the inset.

region of D. This line segment corresponds to a
single pitch of the genera quasi-helical hole curve.
The diameter of such a quasi-helix is defined as the
diameter of the closely similar circular helix which
passes through the vertices of the regular map
{6, 4/4}. Thus, the quasi-helix may be described as
the circum-helix of the regular helical polygon, hav-
ing a four-fold screw isometry which is a hole of the
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regular map {6, 4|4} in the regular warped polyhe-
dron which is homeomorphic to G. Due to its inter-
mediate Bonnet angle with respect to the P and D
surfaces, the G surface lacks straight lines (2-fold
axes) and mirror planes. The volumes on either side
of the gyroid surface are of symmetries P4,32 and
P4,32, respectively. The volumes are therefore chi-
ral, but in combination produce the symmetry la3d,
which is achiral. In its general morphology, G has a
hybrid character with respect to P and D. The G
surface has open round tunnels (in either labyrinth)
which are centred on cube axes, or {1, 0, 0} direc-
tions, as does D. However, the tunnels in D are not
straight, as they conform to the diamond-branched
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Fig. 3. (@ Integration domain of the G patch (shaded). (b) The
10x 10 mesh used to compute the exact G surface. The complex
plane coordinates of points O, P, Q and R are O(0,0), P((y3 —1)/
V2,0, QY2 —1)/2,(/2 —1) /2 and RO/3 —1)/V2). Thearc
which bounds the domain is that of the circle of radius \/5
centered at (—v2 /2,—v2 /2).

labyrinths of the surface. The G surface has a body
centred cubic unit cell. Its primitive rhombohedral
cell contains twelve G saddles and the cubic unit cell
contains twenty-four. In this case the primitive rhom-
bohedral cell is one half of the cubic unit cell. The
integration domain is indicated by the shaded region
in Fig. 3a

3. Parametrization of the G surface

The Enneper—Wel erstrass representation of the G
surface involves integrals which can be evaluated
analytically and are expressed in terms of the incom-
plete elliptic integral of the first kind, F(¢, k?). The
modulus K is real and lies in the interval [0, 1]. The
amplitude ¢ is a complex number. The complete
dliptic integral of the first kind is a special case
defined by the relation K(k?)=F(w/2, k?). The
properties of these two functions are described in
standard texts on special functions [30—-32]. Thus we
give aso a closed-form analytical expression for «.

The Cartesian coordinates of any point on the G
patch are obtained by combining (1) and (2) and
setting 65 = ArcCot[K’'/K ], where K =
EllipticK[1/4], K'=EllipticK[1/4] and w,=0.
The real space coordinates are given by

(%,y,2) = (Re(x*),Re(y"),Re( z")) (32)
where

X(w)=1y—1,

y' (@) =i(lo=15)

Z*(w) =21, (3b)
and the I, are the integrals

(@) =1,(0) + K/O Ny
=0,1and2. (3c)

The variable limit « is any complex point either
inside or on the boundary of the domain shown in
Fig. 3. With the double substitution 7=1t/2 and
s=t+ 1/t, the integrals (3c) are reduced to elliptic
integrals [23]. These are expressed in terms of the
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L egendre—Jacobi integrals to give the surface coordi-
nates as

1 . .
——EllipticF

22

x=k€e’Re

2\/50)
Vot + 40 +1

X [ArcSin

ﬂ} (43

) 1
= ke'Im{ —EllipticF
Y=k {2\/5 p

] -22w 3
X [ArcSIn| ————|,— |}, (4b)
Vol +40?+1 | 4
) 1
z=ke'Re ZE”IptICF
(,!)2
X |ArcSin 97 — 56V3 | }, 4c
(w4+1) V3 (40)

where 6 = ArcCot[ K’ /K.

The point w=(/3 —1)/V2 (point Q in Fig.
2(b)) is a singular point of the Weierstrass function
(2). However, in view of (3) the values of x(Q),
y(Q) and z(Q) exist and are finite. The point w =0
is mapped into (0, 0, 0). The coordinate frame is
therefore defined jointly by the Weierstrass function
(2) and the parametrization (Fig. 1a).

A closed-form analytical expression for k may be
derived. The complex-plane coordinate of the point
Q is (V3 —1)/V2,0). When o=(/3 —1)/V2,
w?=2-V3 and w?=7—4/3. Substituting for
»(Q) in (4) yields the image point of Q in #*

x(Q) = akK'/VK'V2

¥(Q) = —aKK'/VK'Y2

2(Q) = aKK’/2/K" (5)
where K” = K2 + K%, The normalization constant
k=a/K' /KK’ (6)

is thus strictly positive and its value is directly
proportional to the edge length of the bounding cell.

Substitution of (6) into (4) gives the full parametric
equations for the G patch.

4. Properties of the G surface

The above results can be used to evaluate a
number of geometrical properties of the G surface.
For example, using (4) and (6) we verify that z(Q)
=-zR) =a/2

The singular points of the Weierstrass function
(2), O, P and R are mapped into the points O'(0, 0,
0, P(a/V2, -a/V2,a/2) and R(-a/V2,
—a/V2,—a/2) on the G surface. Geometry dic-
tates that the points P and R divide the cube edge a
in the ratio 1: 1 (Fig. 1(b)). The lengths O'P, O'R
and PR are dl invariants of the surface with values
aV/5 /2, a/5 /2 and aV3, respectively. There is no
simple algebraic expression for the coordinates of
the singular point Q. The points Q and R are related
by symmetry, and athough it is easily shown that
PQ =RQ, there seems to be no simple analytical
expression for this length.

By setting 8= 0in (1) we obtain the patch of the
D surface, associate to the G patch. The correspond-
ing image points O’ and P’ have the coordinates
0'(0, 0, 0, P'(a/VK"/2/2K’, 0, a/K" /4K").
Similarly, setting B = /2 we obtain the patch of
the P surface, associate to the G patch. The corre-
sponding image points O” and P” have the coordi-
nates O”(0, 0, 0), P"(0, —ayK"/2y2K,0). The
length O" P" bisects the body diagonal of the cube
of side ay in one-half (see Fig. 2), and the length
O"P"” cuts the face diagonal of the cube of side a,
in the same ratio. We therefore find that

ap =a/K' /2K’ (7)
ap=aV/K 2K (8)

These relationships enable us to derive exact analyti-
cal formulae for the perimeter &, the surface area .&/
and the normalized surface-to-volumeratio .o/ /7°%/3
(since the ratio must be dimensionless we take 7°%/3
instead of 77) of the G patch.

The Bonnet transformation preserves the metric,
the area and perimeter of all associate patches. The
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Table 1

Cartesian coordinates x', ¥ and Z of the twelve fundamental
patches which make up the bounding cell of the G surface. The
coordinates X, y and z are given by Egs. (5) and (7). To compute
the coordinates in the new frame, ¢ =1/v2 and n=a/4

Patch X y z

P —{xX—=Ly —{X+{y+2n z+3n

P, {x—y —{X—={y+2n —2z+3n

Ps —{X+{y+2n z+3n {X+{y+4n
Py —{X—={y+2n —z+3 —{X+{y+4n
P z+3n {X+{y+4n {X—{(y+2n
Ps —z+3n —{X+{y+4n (x+{y+2q
P; {X+{y+4n {X—={y+2n —Z+n

Ps —{X+{y+4n (X+{y+27 Z+m

Py {X—{y+2n —z+n —{x={y

Pio {X+{y+2n Z+7 {X—=2Ly

P —Z+n —{x=Zy —{x+{y+2n
P, z+n {x—1Ly —{X—={y+2n

patch perimeter £ can therefore be simply evauated
from the associate D surface, since this patch is
bounded by straight lines which the surface embeds.
From Fig. 2 and using relationship (7) we deduce
that

P=a,(V2 —1)=a/K" /2K, (9)

If the area of the minimal surface bounded by a
tetrahedron is 7, r is the inradius of a sphere which
touches each face of that tetrahedron at one point

(the inradius of the tetrahedron) and the length of the
perimeter is 2, then [33]
oS =Pr /2. (10)
The Coxeter cell of the P patch is the tetragonal
disphenoid with inradius r = ax(y2 — 1)/2. By sub-
stituting (8) and (9) into (10), we see that ./ =
a’K” /8KK’. The volume of the quadrirectangular
tetrahedron enclosing the G patch is a/3, so

o) 7% %= (3%3/8)K" /KK’

= 0.535871853. ..
(for thefundamental patch)
& /7% %= (3/32"/2)K" /KK’
= 1.947487558. ..

(for theprimitiverhombodral cell)
/7Y%= (3/4%/)K" /KK’
= 2.453680569... (forthebccunitcell).

5. Computation of the G surface

Schoen’ s paper which describes the G surface for
the first time shows only photographs of plastic
models of the surface (Fig. 7 in Ref. [6]). An exact

&,
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17 ’:"J'l

%
m"
AR

7]
/]

i1y
2722

Fig. 4. (@) A piece of the G surface composed of 12 fundamental
patches is inscribed in the bounding cell. (b) The face-centred
cubic unit cell of the G surface made by combining the eight
pieces shown in ().
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Table 2

Cartesian coordinates x”, y’ and z' of the eight bounding cells
which comprise the face centred cubic unit cell of the G surface.
The coordinates X', y and Z aregivenin Tableland n=a

1"

GCellOctant X" y’ z
0O, X y z
0, - X +27 -Y+n z
O, X+ y +n z
0O, X+ -y +2n z
Oy X' -y +n Z—n
Qs - X +27 y Z-n
Q7 -X+n -y +27 Z-n
Og X' +1 y+n Z-n

computation of the surface is as follows. The evalua
tion of the dlliptic functions given above is fast and
straightforward. The Mathematica computer program
(Wolfram Research) has elliptic functions built in as
user-callable subroutines.

The Cartesian coordinates of the points of the G
patch were computed using (4) and (6) using a
10 X 10 mesh (Fig. 3b). Larger surface pieces are
conveniently calculated by transforming the coordi-
nate system to that of Fig. 1a by arotation of — /4
about the z axis, reflecting in the yz plane and
translating the origin along the vector (0, 1,/2, 3/4).
The effect is the creation of a new coordinate frame
with origin a M, whose edges M,;M,, M;M, and
M,M; determinethe X', y and Z axes, respectively
(Fig. 1). The new coordinates of the G patch are
those of P, (Table 1).

While the G surface embeds only an inversion
centre, the bounding cell of the G patch is composed
of twelve congruent parts related by 2-fold rotational
axes and mirror planes. There are two types of diad
axes: four passing through the corners of the bound-
ing cell and the inversion centre, and six which
bisect six of the twelve edges of the bounding cell
and define a skew straight-edged hexagon which
encloses the twelve patches of the cell (Fig. 4a). The
bounding cell represents the second order of hierar-
chy for the construction of the fcc unit cell of the G
surface. Thus it is used as the fundamental building
block in the next stage of construction. The eleven
remaining patches F;, (i = 2—12) were generated from
F, by the successive symmetry operations sum-
marised in Table 1. F, generates F, and so on
pairwise.

Eight bounding cells combine using the symmetry
operations summarised in Table 2, to give the full
face centred cubic unit cell of the G surface. The last
four are related to the first four by a mirror plane
which passes through the centre of the cell parallel to
its top and bottom face and which divides it into two
equa half volumes (Fig. 4b).

6. Conclusions

Integration of the Enneper—\Weierstrass represen-
tation of the G minimal surface with the Welerstrass

function of the form R(7)=(1)/V78— 1474 +1
and the Bonnet angle of 6 = 38.0147° (with respect
to the D surface) enabled us to obtain analytical
expressions for the Cartesian coordinates of the fun-
damental patch of the surface. The surface-to-volume
ratio of the fundamental patch is 0.535871853....
Symmetry considerations allowed us to construct a
piece of the surface composed of 12 fundamental
patches, and finally the face-centred cubic unit cell
of the surface composed of 96 fundamental patches.

References

[1] M.P. do Carmo, Differential Geometry of Curves and Sur-
faces, Prentice-Hall, Engelwood Cliffs, NJ, 1976.

[2] S. Hyde, S. Andersson, K. Larsson, Z. Blum, T. Landh, S.
Lidin, B.W. Ninham, The Language of Shape. The Role of
Curvature in Condensed Matter: Physics, Chemistry and
Biology, Elsevier, Amsterdam, 1997.

[3] H.U. Nissen, Science 166 (1969) 1150.

[4] F.J. Almgren, The Mathematical Intelligencer 4 (1982) 164.

[5] M. Kemp, Nature 389 (1997) 919.

[6] A.H. Schoen, Infinite Periodic Minimal Surfaces Without
Sdlf-Intersections, NASA Technical Note D-5541, NASA,
1970.

[7] S. Forster, A.K. Khandpur, J. Zhao, F.S. Bates, |.W. Hamley,
A.J. Ryan, W. Bras, Macromolecules 27 (1994) 6922.

[8] V. Luzzati, P.A. Spegt, Nature 215 (1967) 701.

[9] H.G. von Schnering, R. Nesper, Angew. Chem. Int. Ed.
Engl. 26 (1987) 1059.

[10] H.G. von Schnering, R. Nesper, Z. Phys. B 83 (1991) 407.

[11] R.T. Blunt, J. Phys. E 13 (1980) 1149.

[12] T. Landh, Federation of European Biochemical Societies
(FEBS) Letters 369 (1995) 13.

[13] C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S.
Beck, Nature 359 (1992) 710.



P.J.F. Gandy, J. Klinowski / Chemical Physics Letters 321 (2000) 363-371 371

[14] D.M. Anderson, P. Strom, Physica A 176 (1991) 151.

[15] V. Alfredsson, M.W. Anderson, T. Ohsuna, O. Terasaki, M.
Jacob, M. Bojrup, Chem. Mater. 9 (1997) 2066.

[16] M.W. Anderson, Zeolites 19 (1997) 220.

[17] A. Baiker, Current Opinion in Solid State and Materials
Science 3 (1998) 86.

[18] W.T.A. Harrison, T.E. Gier, G.D. Stucky, R.W. Broach,
R.A. Bedard, Chem. Mater. 8 (1996) 145.

[19] A. Katz, M.E. Davis, Nature 403 (2000) 286.

[20] J.C.C. Nitsche, Lectures on Minimal Surfaces, Vol. 1, Cam-
bridge University Press, Cambridge, 1989.

[21] D. Cvijovic, J. Klinowski, J. Phys. (Paris) | 2 (1992) 2207.

[22] D. Cvijovi¢, J. Klinowski, J. Phys. (Paris) | 2 (1992) 2191.

[23] D. Cvijovit, J. Klinowski, J. Phys. (Paris) | 2 (1992) 137.

[24] D. Cvijovi¢, J. Klinowski, J. Phys. (Paris) | 3 (1993) 909.

[25] D. Cvijovit, J. Klinowski, Chem. Phys. Lett. 226 (1994) 93.

[26] P.JF. Gandy, D. Cvijovic, A.L. Mackay, J. Klinowski, Chem.
Phys. Lett. 314 (1999) 543.

[27] A. Fogden, S.T. Hyde, Acta Crystallogr. A 48 (1992) 575.

[28] H.SM. Coxeter, Regular Polytopes, 2nd ed., Macmillan,
New York, 1963.

[29] H.A. Schwarz, Gesammelte Mathematische Abhandlungen,
Springer, Berlin, 1890.

[30] M. Abramowitz, I.A. Stegun, Handbook of Mathematical
Functions, Dover, New Y ork, 1980.

[31] I.S. Gradshteyn, I.M. Ryzhik, Tables of Integrals, Series and
Products, Academic Press, New Y ork, 1980.

[32] J. Spanier, K.B. Oldham, An Atlas of Functions, Springer-
Verlag, Berlin, 1987.

[33] B. Smyth, Inventiones Mathematicae 76 (1984) 411.



