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Abstract

Parametrization of the G triply periodic minimal surface, found in many physical, chemical and biological systems, has
allowed us to calculate its coordinates analytically, and fully to describe its properties, such as the surface-to-volume ratio.
Real structures may now be quantitatively compared with the precise coordinates and quantified in terms of the surface
parameters. q 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

A minimal surface is a surface which has a mini-
Ž .mum area with zero mean curvature Hs k qk r21 2

at every point, where k and k are the principal1 2
w xcurvatures 1 . A triply periodic minimal surface

Ž .TPMS is a minimal surface which is periodic in
three independent directions. When it is free of
self-intersections it is said to be embedded. TPMS
are described in terms of a fundamental patch
Ž .‘Flachenstuck’ or asymmetric unit from which the¨ ¨
entire surface may be built up by its symmetry
elements.

Omnipresent in the natural and man-made worlds,
TPMS provide concise, unified descriptions of seem-

w xingly unrelated structures 2 , and are of interest not
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only to the structural chemist, but also in biology and
w xmorphogenesis 3 , structural engineering and the

w xscience of materials 4 , and are echoed in art and
w xarchitecture 5 . Structural features of the G surface

Ž . w xalso known as the gyroid 6 have been found by
X-ray diffraction in bicontinuous cubic systems in

w xAB diblock copolymers 7 , in lecithin–water and
w xlipid–water systems 8 , and in many other systems

at high surfactant concentrations. The G surface
separates the two networks postulated for the struc-

w xture of strontium myristate 8 , and is also found in
w xTa Cl 9 . The gyroid phase is usually found in6 15

phase diagrams between the hexagonal and lamellar
mesophases. The topological analogue of the G sur-
face is the YUU periodic zero equipotential surface
w x w x10 found in compounds with the Ca Al Si O3 2 3 12

garnet structure, which have applications in optoelec-
tronic colour displays and the memory of magnetic

w xbubbles in epitaxial garnet films 11 . Cell mem-
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branes in living organisms such as the endoplasmic
Žreticulum where cell proteins and lipids are synthe-

.sised are known to have a complex three-dimen-
w xsional morphology, which corresponds to TPMS 12 .

The fundamental structures identified in cellular
organella are the cubic G, D and P surfaces. The
partition of space by the surface in the organella
enables cells to control the concentrations of various
molecules and their transport across the bilayers. The
surfactant can be used as a template for polymerisa-
tion reactions where the final product is the ordered
mesoporous silica molecular sieve with well defined

w xpore sizes and shapes 13 , or hydrogels used as
w xcontact lenses 14 . Apart from the lamellar and

hexagonal microstructures, the bicontinuous gyroid
structure is formed. In the cetyltrimethylammonium
chloriderSiO system for high fraction of both com-2

ponents, the gyroid phase forms in which the single
infinite silicate sheet separates the surfactant into
two equal and disconnected sub-volumes. The mid
plane of the silicate sheet in the inorganic meso-

w xporous MCM-48 is the gyroid 15,16 . Although its
structure is amorphous on the microscopic scale, the
mid plane of the silica wall rests on the gyroid. The
structure contains a three-dimensional channel net-

� 4 �work with channels running along 1, 1, 1 and 1, 0,
40 directions. The channel system in MCM-48 may

be viewed as a collection of straight pores running in
� 4the four 1, 1, 1 directions related by the tetrahedral

angle. The two channel systems form an enantiomor-
phic pair. Channel intersections reveal the spiral
nature of both right- and left-handed pore systems
with three channels spiralling around a central pore.

The fact that the G surface divides all space into
two helical regions which are mirror images of one
another is of special interest. Preparation of chiral
catalysts and separation media which combine shape
selectivity and enantioselectivity is a highly desirable
objective in view of the increasing demand for enan-
tiomerically pure compounds, especially for biologi-

w xcal and pharmaceutical purposes 17 . Helical pores
in inorganic materials might be able to act as such

w x‘chiral filters’, but their occurrence is rare 17 be-
Ž .cause helical structures for example quartz are

commonly generated by a uni-directional symmetry
w xelement acting on an achiral structural subunit 18 .

Amorphous silica gel, precipitated around chiral
Ž .molecules which are subsequently removed may

w xhave such properties 19 , but well-characterized
crystalline materials would clearly be preferable for
the purpose.

2. The Enneper–Weierstrass representation

TPMS are described in terms of the fundamental
Ž .patch ‘Flachenstuck’ : the smallest portion of the¨ ¨

surface from which the entire surface can be con-
structed. The Enneper–Weierstrass representation
w x20 gives the coordinates of a minimal surface as

v
iu 2xse Re 1yt R t dtŽ . Ž .H

vo

v
iu 2yse Re i 1qt R t dtŽ . Ž .H

vo

v
iuzse Re 2t R t dt 1Ž . Ž .H

vo

where i2 sy1 and tst q it , associating witha b
Ž . Ž .function R t the Weierstrass function a unique

Ž .surface r t , t which is guaranteed to be minimal;a b

and u is the so-called Bonnet angle. The Cartesian
coordinates of any point are expressed as the real

Ž .parts Re of contour integrals, evaluated in the
complex plane from some fixed point v to a vari-o

able point v. A specific minimal surface can be
determined by integrating its Weierstrass function.

Ž .The integrals 1 can always be evaluated by numeri-
cal integration, but so far could be calculated analyti-

w xcally for only a few surfaces 21–26 .
Using the Bonnet transformation, fully described

by the Bonnet angle, we can generate from a mini-
mal surface a family of minimal surfaces with the
same metric and Gaussian curvatures. By changing u

we obtain associate surfaces; when uspr2, the
associate surface is known as the conjugate surface.
With respect to the D surface, the Bonnet angles are

Ž . w X xus908 for the P surface and usArcCot K rK
w x Xs38.01478, where KsElliptic K 1r4 and K s

w x Ž . w xElliptic K 3r4 for the G surface 6 .
Although the properties of the TPMS follow

Ž . w xuniquely from the Weierstrass function, R t 23 ,
the function is known only for several TPMS of
simple topology. The Weierstrass function may be
constructed if there exists a surface patch from which
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the whole TPMS can be generated by reflection or
rotation of the patch using appropriate symmetry

w xelements 23 . This is the case for the D, G and P
w xsurfaces, for which the Weierstrass function is 27

1
R t s 2Ž . Ž .

8 4't qlt q1

with lsy14.
In general, the Weierstrass function is specified

solely by values of t which correspond to flat
Ž .‘umbilical’ points on the minimal surface where

Ž .hthe Gaussian curvature is zero, in a form P tyt ,i i

where h determines the topology of the surface.
In 1970 Schoen identified the G surface as one of

a further 17 examples of intersection-free TPMS, in
w xaddition to the five cases already known 6 . Its

generating space group is I4 32 and the symmetry1
Ž .of the surface is Ia3d No. 230 , with 96 equivalent

positions. Consequently, it is possible to divide the
unit cell into 96 equivalent asymmetric volumes
related by the symmetry elements of its space group.
The surface embeds an inversion centre which inter-
changes the two sides of the surface and also the two
labyrinth networks which it partitions. The labyrinths
of the G surface are 3-connected and are enantiomor-
phic: one labyrinth is left-handed, the other, right-
handed. The genus of the surface, a measure of its
connectedness, is 3. The fundamental patch of the G
surface is inscribed in a trirectangular tetrahedron, so

w xcalled by Coxeter 28 , because its face angles in-
Ž .clude three right angles Fig. 1a . This is its kaleido-

scopic cell or fundamental region for groups of
reflections in RR3, i.e. the convex polyhedron which
provides plane boundaries enclosing a finite minimal
surface patch which can be replicated by reflection
to yield an infinite TPMS without self-intersections.

Ž .Fig. 1. a The fundamental patch of the G surface shown within
Ž .its bounding cell the cube with edge length a is confined within

two straight lines which pass through the origin and the adjacent
diametrically opposed corners of the cube. The coordinate system
has its origin at point M and its orientation is indicated by the1

axes shown. Flat points OX and RX divide the diagonal M M of3 5
Ž .the bounding cell in the 1:1 ratio. b Projection of the patch onto

the xX yX plane showing the relationship between the xX and yX

X X X Ž .coordinates of the points O , P and R . c Projection of the patch
onto the zX xX plane showing the relationship between the xX and
zX coordinates of the points OX, PX and RX.
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Twelve of these pieces combine to form a larger
surface piece in the hierarchy of assembly, contained

Ž .within a cube Fig. 4a . We will refer to this cube of
side a as the bounding cell of the G patch. The G
surface is associate to both the D and P surfaces,
being related by the Bonnet angle. The boundary of
the patch of the D surface is defined by two straight

Ž .lines Fig. 2 which are embedded 2-fold axes, and
one mirror plane curve. The converse is true for its
adjoint twin, the P surface. However the boundary of
the patch of the G surface is defined by neither
straight lines nor mirror plane curves. Variation of
the Bonnet angle produces a continuum of bent
states intermediate between the D and P surfaces.
The point-group symmetries assigned to the vertices
are preserved. However, the G surface is unique in
that these symmetry elements lock into the crystallo-
graphic space group Ia3d. All other patches drawn
from this continuum of states would produce sur-
faces with self-intersections if continued by these
symmetry elements. Apart from the CLP surface and
its homeomorphic adjoint, which are identical other
than having different tetragonal proportions, the P, D
and G surfaces are the only other example of inter-
section-free associate TPMS. It is considered highly
unlikely that any other intersection-free TPMS con-
taining neither straight lines nor plane lines of curva-
ture are to be found. The effect of the Bonnet
transformation is to transform the lattice of catenoidal
channels into helicoidal strips, through a screw oper-
ation on the whole surface. The channels in both the
P and D surfaces are transformed into spiral tunnels
in the gyroid. The P surface contains plane holes
which are almost circular in cross-section. Schwarz
showed that these have radius variations of only ca.

w x0.4% 29 . These holes correspond to the almost
helical geodesics on the G surface which have radius
variations with respect to cylindrical helices of only
ca. 0.5%. The four-fold screw isometries collapse to
a screw of zero pitch but finite hole diameter for P,
and reach a limit of finite pitch but zero hole diame-
ter for D. The images of these hole curves in P and
G are straight lines in D. The transformation of the
quasi-circular holes in P into straight line holes in D,
via the intermediate quasi-helical holes of the type
which appear in G, is illustrated by the example of
the line segment which is shown extending from left
to right along the central axis of the fundamental

Ž .Fig. 2. a A patch of the D triply periodic minimal surface
Ž . Y Y Y Yassociate to G is bounded by the edges of the O P Q R
tetrahedron. The origin of the coordinate system imposed by the
parametrization is at OY and the orientation of the axes is shown

Ž .in the inset. b A patch of the P triply periodic minimal surface
Ž .associate to G and conjugate to D is bounded by the edges of the
OZ PZ QZ RZ tetrahedron. The origin of the coordinate system
imposed by the parametrization is at OZ and the orientation of the
axes is shown in the inset.

region of D. This line segment corresponds to a
single pitch of the general quasi-helical hole curve.
The diameter of such a quasi-helix is defined as the
diameter of the closely similar circular helix which
passes through the vertices of the regular map
� < 46, 4 4 . Thus, the quasi-helix may be described as
the circum-helix of the regular helical polygon, hav-
ing a four-fold screw isometry which is a hole of the
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� < 4regular map 6, 4 4 in the regular warped polyhe-
dron which is homeomorphic to G. Due to its inter-
mediate Bonnet angle with respect to the P and D

Žsurfaces, the G surface lacks straight lines 2-fold
.axes and mirror planes. The volumes on either side

of the gyroid surface are of symmetries P4 32 and1

P4 32, respectively. The volumes are therefore chi-3

ral, but in combination produce the symmetry Ia3d,
which is achiral. In its general morphology, G has a
hybrid character with respect to P and D. The G

Ž .surface has open round tunnels in either labyrinth
� 4which are centred on cube axes, or 1, 0, 0 direc-

tions, as does D. However, the tunnels in D are not
straight, as they conform to the diamond-branched

Ž . Ž . Ž .Fig. 3. a Integration domain of the G patch shaded . b The
10=10 mesh used to compute the exact G surface. The complex

'Ž . ŽŽ .plane coordinates of points O, P, Q and R are O 0, 0 , P 3 y1 r
' ' ' ' '. ŽŽ . Ž . Ž Ž . .2 , 0 , Q 2 y1 r2, 2 y1 r2 and R 0, 3 y1 r 2 . The arc

'which bounds the domain is that of the circle of radius 2
' 'Ž .centered at y 2 r2,y 2 r2 .

labyrinths of the surface. The G surface has a body
centred cubic unit cell. Its primitive rhombohedral
cell contains twelve G saddles and the cubic unit cell
contains twenty-four. In this case the primitive rhom-
bohedral cell is one half of the cubic unit cell. The
integration domain is indicated by the shaded region
in Fig. 3a.

3. Parametrization of the G surface

The Enneper–Weierstrass representation of the G
surface involves integrals which can be evaluated
analytically and are expressed in terms of the incom-

Ž 2 .plete elliptic integral of the first kind, F w, k . The
w xmodulus k is real and lies in the interval 0, 1 . The

amplitude w is a complex number. The complete
elliptic integral of the first kind is a special case

Ž 2 . Ž 2 .defined by the relation K k sF pr2, k . The
properties of these two functions are described in

w xstandard texts on special functions 30–32 . Thus we
give also a closed-form analytical expression for k .

The Cartesian coordinates of any point on the G
Ž . Ž .patch are obtained by combining 1 and 2 and

w X xsetting u s ArcCot K rK , where K sB
w x X w xElliptic K 1r4 , K sElliptic K 1r4 and v s0.0

The real space coordinates are given by

x , y , z s Re xU ,Re yU ,Re zU 3aŽ . Ž . Ž . Ž . Ž .Ž .
where

xU
v s I y IŽ . 0 2

yU
v s i I y IŽ . Ž .0 2

zU
v s2 I 3bŽ . Ž .1

and the I are the integralsp

v
pt dt

I v s I 0 qk with pŽ . Ž . Hp p 8 4'0 t y14t q1

s0, 1 and 2. 3cŽ .

The variable limit v is any complex point either
inside or on the boundary of the domain shown in
Fig. 3. With the double substitution ts t1r2 and

Ž .ss tq1rt, the integrals 3c are reduced to elliptic
w xintegrals 23 . These are expressed in terms of the
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Legendre–Jacobi integrals to give the surface coordi-
nates as

1
iuxske Re Elliptic F½ '2 2

=
'2 2 v 1

ArcSin , , 4aŽ .
4 2 5ž /' 4v q4v q1

1
iuyske Im Elliptic F½ '2 2

=
'y2 2 v 3

ArcSin , , 4bŽ .
4 2 5ž /' 4v q4v q1

1
iuzske Re Elliptic F½ 4

=

24v 'ArcSin ,97y56 3 , 4cŽ .4 5ž /v q1

w X xwhere usArcCot K rK .
' 'Ž . ŽThe point vs 3 y1 r 2 point Q in Fig.

Ž ..2 b is a singular point of the Weierstrass function
Ž . Ž . Ž .2 . However, in view of 3 the values of x Q ,
Ž . Ž .y Q and z Q exist and are finite. The point vs0

Ž .is mapped into 0, 0, 0 . The coordinate frame is
therefore defined jointly by the Weierstrass function
Ž . Ž .2 and the parametrization Fig. 1a .

A closed-form analytical expression for k may be
derived. The complex-plane coordinate of the point

' ' ' 'ŽŽ . . Ž .Q is 3 y1 r 2 ,0 . When vs 3 y1 r 2 ,
2 2' 'v s2y 3 and v s7y4 3 . Substituting for
Ž . Ž . 3v Q in 4 yields the image point of Q in RR

YX ' 'x Q saKK r K 2Ž .
YX ' 'y Q syaKK r K 2Ž .

YX 'z Q saKK r2 K 5Ž . Ž .

where K Y sK 2 qK X 2. The normalization constant
Y X'ksa K rKK 6Ž .

is thus strictly positive and its value is directly
proportional to the edge length of the bounding cell.

Ž . Ž .Substitution of 6 into 4 gives the full parametric
equations for the G patch.

4. Properties of the G surface

The above results can be used to evaluate a
number of geometrical properties of the G surface.

Ž . Ž . Ž .For example, using 4 and 6 we verify that z Q
Ž .syz R sar2.

The singular points of the Weierstrass function
Ž . XŽ2 , O, P and R are mapped into the points O 0, 0,

X X' ' '. Ž . Ž0 , P ar 2 , yar 2 , ar2 and R yar 2 ,
' .yar 2 , yar2 on the G surface. Geometry dic-

tates that the points PX and RX divide the cube edge a
Ž Ž .. X X X Xin the ratio 1: 1 Fig. 1 b . The lengths O P , O R

and PXRX are all invariants of the surface with values
' ' 'a 5 r2, a 5 r2 and a 3 , respectively. There is no

simple algebraic expression for the coordinates of
the singular point Q. The points Q and R are related
by symmetry, and although it is easily shown that
PXQX sRXQX, there seems to be no simple analytical
expression for this length.

Ž .By setting bs0 in 1 we obtain the patch of the
D surface, associate to the G patch. The correspond-
ing image points OY and PY have the coordinates

Y YY Y X X' ' 'Ž . Ž .O 0, 0, 0 , P ar K r2 2 K , 0, a K r4K .
Similarly, setting bspr2 we obtain the patch of
the P surface, associate to the G patch. The corre-
sponding image points OZ and PZ have the coordi-

YZ Z ' 'Ž . Ž .nates O 0, 0, 0 , P 0, ya K r2 2 K , 0 . The
length OZ PZ bisects the body diagonal of the cube

Ž .of side a in one-half see Fig. 2 , and the lengthD

OZ PZ cuts the face diagonal of the cube of side aP

in the same ratio. We therefore find that

Y X'a sa K r2 K 7Ž .D

Y'a sa K 2 K 8Ž .P

These relationships enable us to derive exact analyti-
cal formulae for the perimeter PP, the surface area AA

and the normalized surface-to-volume ratio AArVV 2r3

Ž 2r3since the ratio must be dimensionless we take VV
.instead of VV of the G patch.

The Bonnet transformation preserves the metric,
the area and perimeter of all associate patches. The
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Table 1
Cartesian coordinates xX, yX and zX of the twelve fundamental
patches which make up the bounding cell of the G surface. The

Ž . Ž .coordinates x, y and z are given by Eqs. 5 and 7 . To compute
'the coordinates in the new frame, j s1r 2 and hs ar4

X X XPatch x y z

P yz xyz y yz xqz yq2h zq3h1

P z xyz y yz xyz yq2h y zq3h2

P yz xqz yq2h zq3h z xqz yq4h3

P yz xyz yq2h y zq3h yz xqz yq4h4

P zq3h z xqz yq4h z xyz yq2h5

P y zq3h yz xqz yq4h z xqz yq2h6

P z xqz yq4h z xyz yq2h y zqh7

P yz xqz yq4h z xqz yq2h zqh8

P z xyz yq2h y zqh yz xyz y9

P z xqz yq2h zqh z xyz y10

P y zqh yz xyz y yz xqz yq2h11

P zqh z xyz y yz xyz yq2h12

patch perimeter PP can therefore be simply evaluated
from the associate D surface, since this patch is
bounded by straight lines which the surface embeds.

Ž .From Fig. 2 and using relationship 7 we deduce
that

Y X' 'PPsa 2 y1 sa K r2 K . 9Ž .Ž .D

If the area of the minimal surface bounded by a
tetrahedron is AA, r is the inradius of a sphere which
touches each face of that tetrahedron at one point
Ž .the inradius of the tetrahedron and the length of the

w xperimeter is PP, then 33

AAsPPrr2. 10Ž .
The Coxeter cell of the P patch is the tetragonal

'Ž .disphenoid with inradius rsa 2 y1 r2. By sub-P
Ž . Ž . Ž .stituting 8 and 9 into 10 , we see that AAs

a2K Yr8 KK X. The volume of the quadrirectangular
tetrahedron enclosing the G patch is a3r3, so

AArVV 2r3 s 32r3r8 K YrKK XŽ .
s0.535871853 . . .

for the fundamental patchŽ .
AArVV 2r3 s 3r321r2 K YrKK XŽ .

s1.947487558 . . .

for the primitive rhombodral cellŽ .
AArVV 2r3 s 3r42r3 K YrKK XŽ .

s2.453680569 . . . for the bcc unit cell .Ž .

5. Computation of the G surface

Schoen’s paper which describes the G surface for
the first time shows only photographs of plastic

Ž w x.models of the surface Fig. 7 in Ref. 6 . An exact

Ž .Fig. 4. a A piece of the G surface composed of 12 fundamental
Ž .patches is inscribed in the bounding cell. b The face-centred

cubic unit cell of the G surface made by combining the eight
Ž .pieces shown in a .
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Table 2
Cartesian coordinates xY , yY and zY of the eight bounding cells
which comprise the face centred cubic unit cell of the G surface.
The coordinates xX, yX and zX are given in Table 1 and hs a

Y Y YGCellOctant x y z
X X XO x y z1

X X XO y x q2h y y qh z2
X X XO y x qh y qh z3

X X XO x qh y y q2h z4
X X XO x y y qh z yh5

X X XQ y x q2h y z yh6
X X XQ y x qh y y q2h z yh7

X X XO x qh y qh z yh8

computation of the surface is as follows. The evalua-
tion of the elliptic functions given above is fast and
straightforward. The Mathematica computer program
Ž .Wolfram Research has elliptic functions built in as
user-callable subroutines.

The Cartesian coordinates of the points of the G
Ž . Ž .patch were computed using 4 and 6 using a

Ž .10=10 mesh Fig. 3b . Larger surface pieces are
conveniently calculated by transforming the coordi-
nate system to that of Fig. 1a by a rotation of ypr4
about the z axis, reflecting in the yz plane and

Ž .translating the origin along the vector 0, 1r2, 3r4 .
The effect is the creation of a new coordinate frame
with origin at M whose edges M M , M M and1 1 2 1 4

M M determine the xX, yX and zX axes, respectively1 5
Ž .Fig. 1 . The new coordinates of the G patch are

Ž .those of P Table 1 .1

While the G surface embeds only an inversion
centre, the bounding cell of the G patch is composed
of twelve congruent parts related by 2-fold rotational
axes and mirror planes. There are two types of diad
axes: four passing through the corners of the bound-
ing cell and the inversion centre, and six which
bisect six of the twelve edges of the bounding cell
and define a skew straight-edged hexagon which

Ž .encloses the twelve patches of the cell Fig. 4a . The
bounding cell represents the second order of hierar-
chy for the construction of the fcc unit cell of the G
surface. Thus it is used as the fundamental building
block in the next stage of construction. The eleven

Ž .remaining patches F is2–12 were generated fromi

F by the successive symmetry operations sum-1

marised in Table 1. F generates F and so on1 2

pairwise.

Eight bounding cells combine using the symmetry
operations summarised in Table 2, to give the full
face centred cubic unit cell of the G surface. The last
four are related to the first four by a mirror plane
which passes through the centre of the cell parallel to
its top and bottom face and which divides it into two

Ž .equal half volumes Fig. 4b .

6. Conclusions

Integration of the Enneper–Weierstrass represen-
tation of the G minimal surface with the Weierstrass

8 4'Ž . Ž .function of the form R t s 1 r t y14t q1
Žand the Bonnet angle of us38.01478 with respect

.to the D surface enabled us to obtain analytical
expressions for the Cartesian coordinates of the fun-
damental patch of the surface. The surface-to-volume
ratio of the fundamental patch is 0.535871853 . . . .
Symmetry considerations allowed us to construct a
piece of the surface composed of 12 fundamental
patches, and finally the face-centred cubic unit cell
of the surface composed of 96 fundamental patches.
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