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Abstract

Parametrization of the Schwarz P triply periodic minimal surface, found in many physical, chemical and biological
systems, has allowed us to calculate its coordinates analytically, and to describe its properties, such as the surface-to-volume
ratio. Real structures may now be quantitatively compared with the precise coordinates and quantified in terms of the surface
parameters. q 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

A minimal surface is a surface for which the
Ž .mean curvature Hs k qk r2 is zero at every1 2

point, where k and k are the principal curvatures1 2
w x Ž .1 . A triply periodic minimal surface TPMS is a
minimal surface which is periodic in three indepen-
dent directions. TPMS are omnipresent in the natural
and man-made worlds and provide a concise descrip-

w xtion of many seemingly unrelated structures 2 . They
have become of interest not only to the structural

w xchemist, but also the biologist 3 , structural engineer
w xand the materials scientist 4 , and are echoed in art

w x Žand architecture 5 . The Schwarz P surface col-
.loquially known as ‘the plumber’s nightmare’ is
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found in the ternary mixtures of oil, water and
surfactant. These self-assembled structures are tem-
plates in the inorganic and organic polymerisation
reactions which lead to mesoporous molecular sieves
w x w x6,7 and contact lens materials 8 , respectively.
Other cubic phases are found in ternary mixtures of

w xsurfactants with oil and water 9 . In the system of
didodecyldimethylammonium bromide–water–
styrene, periodic surfaces exist over a wide range of
water fractions. The P surface is also found in the
zeolite sodalite, Na Al Si O Cl, and the per-4 3 12 26

w xovskite-type structure of CaTiO 10 . The periodic3
w x Uzero equipotential surface 11 called P in com-

pounds with the caesium chloride structure is the
topological analogue of the P surface.

Following the discovery of new carbon architec-
Ž .tures fullerenes, tubes and spirals , it has been shown

that TPMS can be ‘decorated’ with carbon atoms
w x12 . Hypothetical ordered graphite foams with
topologies similar to periodic minimal surfaces have
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been constructed by introducing 7- or 8-membered
rings of carbon atoms into sheets of 6-membered

w xrings so as to give rise to saddle-shape surfaces 13 .
These structures should be more stable than fullerenes
mainly because the 1208 bond angles in graphite are
almost preserved. The energies of the P, D, G and
I-WP surfaces decorated with carbon were found to
be lower than that of the C molecule.60

The presence of periodic surfaces in plant etio-
plasts and in the course of crystallisation of mem-

w xbrane proteins 14 indicates their morphogenetic
function. When a plant is grown in the absence of

Žlight, the lamellar structure of chloroplasts organella
.involved in photosynthesis transforms into the peri-

odic surface of the same topology and symmetry as
w xthe P surface, although not minimal 15 . Cell mem-

branes in living organisms, such as the endoplasmic
reticulum and the cellular organella, have complex
three-dimensional morphologies, which correspond

w xto those of the P, G and D surfaces 16 . The
skeletal elements of sea stars, sea urchins and sea-
cucumbers are the monocrystals of a magnesium-rich
calcite, each crystal being delimited by a surface
with the same topology as the P surface rather than

w xa planar surface 3 . The periodic structures formed
by lipids, surfactants and soaps in water solutions

w xhave been known since 1967 17 .
In all real structures, minimal surfaces have been

identified by visual inspection – in a way which is
anecdotal rather than quantitative. In order to be able

Žto compare real structures for example, those stored
.in the Cambridge Crystallographic Database with

TPMS, it is necessary to know the precise coordi-
nates of the latter. With this in mind, we have given
analytical expressions for the parameters and the D
w x w x18 and G 19 surfaces using our analytical equa-

w xtions for the tD surfaces 20 . The aim of this work
is to give such expressions for the P surface.

2. Enneper–Weierstrass representation

A minimal surface free of self-intersections is said
to be embedded. TPMS are described in terms of the

Ž .fundamental patch ‘Flachenstuck’ : the smallest¨ ¨
portion of the surface from which the entire surface

can be constructed. The Enneper–Weierstrass repre-
w xsentation 21 gives the coordinates of a minimal

surface as

v
iu 2xsRee 1yt R t dt ,Ž . Ž .H

vo

v
iu 2ysRee i 1qt R t dt ,Ž . Ž .H

vo

v
iuzsRee 2t R t dt , 1Ž . Ž .H

vo

where i2 sy1 and tst q it , associating witha b
Ž . Ž .function R t the Weierstrass function a unique

Ž .surface r t ,t which is guaranteed to be minimal;a b

u is the so-called Bonnet angle. The Cartesian coor-
dinates of any point are expressed as the real parts
Ž .Re of contour integrals, evaluated in the complex
plane from some fixed point v to a variable pointo

v. A specific minimal surface can be determined by
Ž .integrating its Weierstrass function. The integrals 1

can always be evaluated by numerical integration,
but so far have been calculated analytically for only

w xa few surfaces 18–20,22–25 .
Using the Bonnet transformation, fully described

by the Bonnet angle, we can generate from a mini-
mal surface a family of minimal surfaces with the
same metric and Gaussian curvatures. By changing u

we obtain associate surfaces; when uspr2, the
associate surface is known as the conjugate surface.
With respect to the D surface, the Bonnet angles are

Ž . w X xus908 for the P surface and usArcCot K rK
w x Xs38.01478, where KsEllipticK 1r4 and K s

w x Ž . w xEllipticK 3r4 for the G surface 26 .
The generating space group of the P surface is

Ž .Pm3m No. 221 and the symmetry of the surface is
Ž .Im 3m No. 229 which contains 48 equivalent posi-

tions. It is thus possible to divide the unit cell into 48
equivalent asymmetric volumes related by the sym-
metry elements of its space group. The surface em-
beds an inversion centre together with two-fold lines
which interchange the two sides of the surface and
also the two labyrinth networks which it partitions.
The pair of labyrinths of the P surface are 6-con-
nected and are simply related by translation. TPMS
such as P, D and G divide space into two equal, but
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Ž .some I-WP, O and C-TO into unequal subvol-
umes.

Although the properties of the TPMS follow
Ž . w xuniquely from the Weierstrass function, R t 20 ,

the function is known only for several TPMS of
simple topology. The Weierstrass function may be
constructed if there exists a surface patch from which
the whole TPMS can be generated by reflection or
rotation of the patch using appropriate symmetry

w xelements 20 . This is the case for the D, G and P
w xsurfaces, for which the Weierstrass function is 27

1
R t s 2Ž . Ž .

8 4't qlt q1

with lsy14.
In general, the Weierstrass function is specified

Ž .by values of t which correspond to flat ‘umbilical’
points on the minimal surface where the Gaussian

Ž .hcurvature is zero, in a form P tyt , where hi i

determines the topology of the surface. The P sur-
face has eight flat points through which three-fold
inversion axes run. Around a small circle enclosing a
flat point a vector normal to the surface rotates with
twice the angular velocity in the counter-rotatory

< < < <direction. The maxima of k s k occur at four1 2

points around the nape of each neck in the P sur-
face. The flat points, defined as points where every
cross-section is inflected and the two principal curva-

< < < <tures become degenerate k s k s0, occur peri-1 2

odically on the surface and in the unit cell occur at
the eight monkey-saddle points.

The fundamental patch of the P surface is in-
scribed in a quadrirectangular tetrahedron, its four
vertices having coordinates proportional to the space

Ž . Ž . Ž . Ž .vectors y1,0,0 , 1,y2,0 , 1,2,0 and y1,0,2

Ž .Fig. 1. a The fundamental patch of the P surface shown within
Ž .its bounding cell the cube with edge length a . The patch is

confined by the tri-rectangular tetrahedron and meets its faces
orthogonally. The coordinate system has its origin at point OX and
its orientation is indicated by the axes shown in the inset diagram.
Flat point OX divides the cube edge, a, in the ratio 1:1. Flat point

X Ž .P divides the body diagonal in the 1:1 ratio. b The projection of
the patch onto the xy plane showing the relationship between the

X X X Ž .x and y coordinates of the points O , P and Q . c The
projection of the patch onto the zx plane showing the relationship
between the x and z coordinates of the points OX, PX and QX.
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ŽFig. 2. A patch of the D triply periodic minimal surface con-
.jugate to P is bounded by the edges of the quadrirectangular

tetrahedron OYPY QYRY. The origin of the coordinate system im-
posed by the parametrization is at OY and the orientation of the
axes is shown in the inset.

w xand was so named by Coxeter 28 , because its face
Ž .angles include four right angles Fig. 1a . This is its

kaleidoscopic cell or fundamental region for groups
of reflections in R3, i.e. the convex polyhedron
which provides plane boundaries enclosing a finite
minimal surface patch which can be replicated by
reflection to yield an infinite TPMS without self-in-
tersections. Six of these pieces combine to form a
larger surface piece in the hierarchy of assembly,

Ž .contained within a cube of side a Fig. 4a , which
we will refer to as the bounding cell of the P patch.
The boundary of the patch of the P surface is defined

Ž .by one straight line Fig. 2 which is an embedded
2-fold axis, and two mirror plane curves. The con-
verse is true for its adjoint twin, the D surface. Apart
from the CLP surface and its homeomorphic adjoint,
which are identical other than having different te-
tragonal proportions, the P, D and G surfaces are
the only other examples of intersection-free associate
TPMS. The effect of the Bonnet transformation is to
transform the lattice of catenoidal channels into heli-
coidal strips, through a screw operation on the whole
surface. The P surface contains plane ‘holes’ which
are almost circular in cross-section. Schwarz showed
that these have radius variations of only about

w x0.4% 29 . The four-fold screw isometries collapse to
a screw of zero pitch, but finite ‘hole’ diameter, for
P, and reach a limit of finite pitch, but zero ‘hole’
diameter, for D. The images of these hole curves in
P are straight lines in D. The transformation of the
quasi-circular holes in P into straight line holes in
D, via the intermediate quasi-helical holes of the
type which appear in G, is illustrated by the example
of the line segment which is shown extending from
left to right along the central axis of the fundamental
region of D. This line segment corresponds to a
single pitch of the general quasi-helical hole curve.
The diameter of such a quasi-helix is defined as the
diameter of the closely similar circular helix which

� < 4passes through the vertices of the regular map 6,4 4 .

Ž . Ž . Ž .Fig. 3. a Integration domain of the P patch shaded . b The
mesh used for computing the P surface. The complex-plane

Ž . ŽŽ . .coordinates of points O, P and Q are O 0,0 , P 63y1 r62,0
ŽŽ . ŽŽ . .and Q 62y1 r2, 62y1 r2 . The circular arc which bounds the

Ždomain is that of the circle of radius 62 centered at y62r2,y
.62r2 . Its centre is marked with a point.
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Thus, the quasi-helix may be described as the cir-
cum-helix of the regular helical polygon, having a

Fig. 4. The transformed coordinate system used in this figure is
Ž .explained in the text. a A piece of the P surface composed of

six fundamental patches is inscribed in the bounding cell. Six
Ž .edges of the cube are divided in the 1:1 ratio. b The unit cell of

Ž .the P surface made by combining eight pieces shown in a . The
exact surface area of this piece is 12 a2K rK X. The origin of the
coordinate system is at the centre of the cube, and the orientation
of the axes is as shown.

Table 1
Cartesian coordinates xX, yX and zX of the six fundamental patches
which make up the bounding cell of the P surface. The coordi-

Ž . Ž .nates x, y and z are given by Eqs. 5 and 7 . To compute the
coordinates in the new frame, j s1r62 and hs ar2

X X XPatch x y z

P yz xyz y zqh yz xqz yq2h1

P yz xyz y yz xqz yq2h zqh2

P zqh yz xyz y yz xqz yq2h3

P yz xqz yq2h zqh yz xyz y4

P yz xqz yq2h yz xyz y zqh5

P zqh yz xqz yq2h yz xyz y6

four-fold screw isometry which is a hole of the
� < 4regular map 6,4 4 in the regular warped polyhedron

which is homeomorphic to G. The primitive cell of
the P surface has the same symmetry as the cubic
cell and contains 12 P-saddles. The integration do-
main is indicated by the shaded region in Fig. 3.

3. Parametrization of the P surface

Ž . Ž .Integrals obtained by substituting 2 into 1 and
putting uspr2 and v s0 can be expressed ino

terms of the incomplete elliptic integrals of the first
Ž 2 . w xkind, F w,k 30–32 . The modulus k is real and

w xlies in the interval 0,1 . The amplitude w is com-
plex.

The Cartesian coordinates of any point on the P
patch are

) ) )x , y , z s Re x , Re y , Re z , 3aŽ . Ž . Ž . Ž . Ž .
where

x ) v s I y I ,Ž . 0 2

y) v s i I q I ,Ž . Ž .0 2

z ) v s2 I , 3bŽ . Ž .1

and the I are the integralsp

v
pt dt

I v s I 0 qkŽ . Ž . Hp p 8 4'0 t y14t q1

with ps0,1 and 2 . 3cŽ .
The variable limit v is any complex point either

inside or on the boundary of the domain shown in
Fig. 3. With the double substitution ts t1r2 and
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Ž .ss tq1rt, the integrals 3c are reduced to elliptic
w xintegrals 20 . These are expressed in terms of the

Legendre–Jacobi integrals to give the surface coordi-
nates as

1
xsyk Im EllipticF½ '2 2

=
'2 2 v 1

ArcSin , , 4aŽ .
4 2 5ž /' 4v q4v q1

1
ysk Re EllipticF½ '2 2

=
'y2 2 v 3

ArcSin , , 4bŽ .
4 2 5ž /' 4v q4v q1

1
zsyk Im EllipticF½ 4

=

24v 'ArcSin ,97y56 3 . 4cŽ .4 5ž /v q1

Ž . Ž .The point vs 63y1 r62 point Q in Fig. 2b
Ž .is a singular point of the Weierstrass function 2 .

Ž . Ž . Ž .However, in view of 3 the values of x Q , y Q
Ž .and z Q exist and are finite. The point vs0 is

Ž .mapped into 0,0,0 . The coordinate frame is there-
Ž .fore defined jointly by the Weierstrass function 2

Ž .and the parametrization see Fig. 1a .
A simple closed-form analytical expression for k

may be derived. The complex-plane coordinate of
ŽŽ . .the point Q is 63y1 r62,0 . Note that when

Ž . 2 4vs 63y1 r62, v s2y63 and v s7y463.
Ž . Ž .Substituting for v Q in 4 yields the image point

of Q in R3 with the coordinates

x Q s0, y Q syaK Xr262, z Q s0 . 5Ž . Ž . Ž . Ž .

The normalization constant is therefore

ks2 arK X . 6Ž .

It is strictly positive and its value is directly propor-
tional to the edge length of the bounding cell. Substi-

Ž . Ž .tution of 6 into 4 gives the full parametric equa-
tions for the P patch in R3.

4. Properties of the P surface

Ž . Ž . Ž . Ž .Eqs. 4a , 4b , 4c and 6 can be used to
evaluate a number of geometric properties of the P
surface. The singular points of the Weierstrass func-

Ž .tion 2 , O and P are mapped into the points
XŽ . XŽ .O 0,0,0 and P 0,yar62,0 on the surface. Geom-

etry dictates that the point PX divides the body
Ždiagonal of the bounding cell in the 1:1 ratio Fig.

. X1b , while the point O divides the cube edge, a, in
the same ratio. The length OXPX is an invariant of the
surface with value ar62. There is, however, no
simple algebraic expression for the coordinates of
the singular point Q.

Ž .By setting us0 in 1 we obtain the patch of the
D surface, conjugate to the P patch. The corre-
sponding image points OY and PY have the coordi-

YŽ . YŽ X X.nates O 0,0,0 , P aKr62 K ,0,aKr62 K . The
length OYPY bisects the body diagonal of the cube of

Ž .side a in one-half see Fig. 2 . We therefore deduceD

that

a saKrK X . 7Ž .D

This relationship enables us to derive exact ana-
lytical formulae for the perimeter PP, the surface area
AA and the normalized surface-to-volume ratio

2r3 ŽAArVV since the ratio must be dimensionless we
2r3 .take VV instead of VV of the P patch.

The Bonnet transformation preserves the metric,
the area and perimeter of all associate patches. The
patch perimeter PP can therefore be simply evaluated
from the associate D surface, since this patch is
bounded by straight lines which the surface embeds.

Ž .From Fig. 2 and using 7 we find that

X' 'PPsa 2 q1 saK 2 q1 rK . 8Ž .Ž . Ž .D

If the area of the minimal surface bounded by a
tetrahedron is AA, r is the inradius of a sphere which
touches each face of that tetrahedron at one point
Ž .the inradius of the tetrahedron and the length of the

w xperimeter is PP, then 33

AAsPPrr2 . 9Ž .

The Coxeter cell of the P patch is the tetragonal
Ž .disphenoid with inradius rsa 62y1 r2. Thus,P

Ž . Ž .by substituting for t and PP in 9 and using 7 , we
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find AAsa2Kr4K X. The volume of the quadrirect-
angular tetrahedron enclosing the P patch is a3r3,
so

2r3 X2r3AArVV s 3r4 KrK s0.6452799262 . . .Ž .
for the fundamental patchŽ .

AArVV 2r3 s3KrK X s2.345102884 . . .

for the bcc unit cell .Ž .

5. Computation of the P surface

An exact computation of the P surface proceeds
as follows. The evaluation of the elliptic functions
given above is fast and straightforward. The Mathe-

Ž .matica program Wolfram Research has elliptic
functions built in as user-callable subroutines.

The Cartesian coordinates of the points of the P
Ž . Ž .patch were computed using Eqs. 5 and 7 from a

Ž .10=10 mesh Fig. 3b . The coordinates of the full
P patch were obtained by reflection of the image

Ž .points of the integration domain Fig. 3 in the zx
plane, a mirror plane of symmetry of the P patch.
This avoids computational difficulties in the calcula-
tion of the surface coordinate corresponding to the

Ž .Ž .complex plane point vs 1y1r62 1q i . Larger
surface pieces are conveniently calculated by trans-
forming the coordinate system to that of Fig. 1a by a
rotation of ypr4 about the z axis, reflecting in the
yz plane and translating the origin along the vector
Ž .0,1r2,1 . The effect is the creation of a new coordi-
nate frame with origin at M whose edges M M ,1 1 2

M M and M M determine the xX, yX and zX axes1 4 1 5
Ž .respectively see Fig. 4a . Hence the entire bounding

cell is in the first octant and three of its faces are
coordinate planes. The new coordinates of the P

Ž .patch are those of P see Table 1 . By reflecting a1
Ž .piece of the P surface obtained in this way Fig. 4a

Žthrough the coordinate planes a simple change of
.the sign of the coordinates we arrive at the complete

Ž .P unit cell Fig. 4b .

6. Conclusions

Integration of the Enneper–Weierstrass represen-
tation of the P minimal surface with the Weierstrass

1Ž .function of the form R t s and the
8 4't y14t q1

ŽBonnet angle of us908 with respect to the D
.surface enabled us to obtain analytical expressions

for the Cartesian coordinates of the fundamental
patch of the surface. The surface-to-volume ratio of
the fundamental patch is 0.6452799262 . . . . Symme-
try considerations allowed us to construct a piece of
the surface composed of six fundamental patches,
and finally the cubic unit cell of the surface com-
posed of 48 fundamental patches.
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