courbe suivante | courbe précédente | courbes 2D | courbes 3D | surfaces | fractals | polyèdres |
CONSTANT ANGULAR ACCELERATION CURVE
Curve studied by Mikhail Gaichenkov in 2008. |
Differential equation :
(a > 0), so ,
so , after
rotation.
Polar equation : where f is the unique solution on of ; , see the sequence A202407 from OEIS for this development. |
Cette courbe est la trajectoire d'un mouvement à
accélération angulaire constante non nulle.
Plus précisément, si une droite tourne uniformément
autour d'un de ses points, un point de cette droite se meut de sorte à
avoir un mouvement uniformément accéléré sur
sa trajectoire.
More precisely, if a line turns uniformly around one of its points, a point of this line moves so as to have a uniformly accelerated movement on its trajectory. |
For , ; the curve follows the la Galileo spiral:, in green opposite. |
|
For , ; the curve becomes asymptote to the Archimedean spiral:, in green opposite. |
|
Note that the curve at zero angular acceleration (i.e.
at constant angular speed) is the circle.
We can also consider a curve drawn by a point moving on a line in uniform translation perpendicular to its direction with a uniformly accelerated movement on its trajectory: |
Differential equation :
(a > 0), so ,
so , after
translation, or .
Cartesian parametrization : . Cartesian equation : , asymptote curve : . Curvilinear abscissa : . Radius of curvature : . Intrinsic equation 1 : . |
courbe suivante | courbe précédente | courbes 2D | courbes 3D | surfaces | fractals | polyèdres |
© Robert FERRÉOL
2020