next surface | previous surface | 2D curves | 3D curves | surfaces | fractals | polyhedra |
BOUGUER DOME
Surface definied by Bouguer in 1734, and studied by Bossut
in 1778.
Reference : Benvenuto Edoardo, An introduction to the history of structural mechanic, part II, vaulted structures and elastic systems, pages 344 to 348. |
Cylindrical equation : , where , solution of the differential equation : (the catenary being solution of ). |
Le dôme de Bouguer est la forme prise par une structure
de pierres jointives tenant par leur propre poids à symétrie
de révolution (alors que la surface en forme de U ayant la même
propriété a une section de chaînette).
The Bouguer dome is the form taken by a structure of
contiguous stones holding by their own weight with a symmetry of revolution
(while the U-shaped surface with the same property has a catenary section).
Example of a borie, dry stone hut with corbelled vault on a circular plan, in Bonnieux (Vaucluse, France). Author: Dominique Repérant |
next surface | previous surface | 2D curves | 3D curves | surfaces | fractals | polyhedra |
© Robert FERRÉOL
2021