next surface previous surface 2D curves 3D curves surfaces fractals polyhedra

BOUGUER DOME

Surface definied by Bouguer in 1734, and studied by Bossut in 1778.
Reference : Benvenuto Edoardo, An introduction to the history of structural mechanic, part II, vaulted structures and elastic systems, pages 344 to 348.

 
Cylindrical equation : , where , solution of the differential equation :  (the catenary being solution of ).

Le dôme de Bouguer est la forme prise par une structure de pierres jointives tenant par leur propre poids à symétrie de révolution (alors que la surface en forme de U ayant la même propriété a une section de chaînette).
The Bouguer dome is the form taken by a structure of contiguous stones holding by their own weight with a symmetry of revolution (while the U-shaped surface with the same property has a catenary section).
 

Example of a borie, dry stone hut with corbelled vault on a circular plan, in Bonnieux (Vaucluse, France).
Author: Dominique Repérant 

 
 
next surface previous surface 2D curves 3D curves surfaces fractals polyhedra

© Robert FERRÉOL  2021