next surface previous surface 2D curves 3D curves surfaces fractals polyhedra

CLIFFORD'S TORUS


William Clifford (1845 - 1879): British mathematician.

 
 
System of Cartesian equations: .
Cartesian parametrization: .
Algebraictranslation surface of degree 4 of R4.

Like the Bohemian dome, Clifford's torus is the surface generated by the translation of a circle along another circle, but here, the two circles are in directly orthogonal planes in .
It can also be seen as the Cartesian product of two circles; it is therefore one of the representations of the topological torus.
It is a Riemannian manifold of dimension 2 the Gauss curvature of which is zero, which is why it is also called "flat torus".
It is included in a 3-dimensional sphere of  with radius .
Its affine projections in R3 are homeomorphic to the Bohemian dome (and therefore have a self-intersection curve), while its stereographic projections in R3 are the Dupin cyclides (including the usual tori)??? (cf. banchoff)

It can be generalized to the n-dimensional Clifford's torus, embedded in  parametrized by ., which is a representation of the n-dimensional torus.
 
 
next surface previous surface 2D curves 3D curves surfaces fractals polyhedra

© Robert FERRÉOL 2017