surface suivante surface précédente courbes 2D courbes 3D surfaces fractals polyèdres

SURFACE DE DINI
Dini's surface, Dinische Fläche

Surface étudiée par Dini en 1865.
Ulisse Dini (1845-1918) : mathématicien italien.
Autre nom : hélicoïde pseudosphérique.
Lien : catalogue des modèles de l'université de Besançon.

 
 
Paramétrisation cartésienne : () ; cf. d'autres paramétrisations à partir de celles de la tractrice).
Première forme quadratique fondamentale : .
Courbure totale : .

 
La surface de Dini est la surface engendrée par le vissage d'une tractrice le long de son asymptote, autrement dit, l'hélicoïde de génératrice une tractrice et d'axe l'asymptote de cette tractrice.

Sa propriété principale est d'être à courbure totale constante, comme la pseudosphère engendrée, elle, par la rotation d'une tractrice autour de son asymptote.

Une autre propriété est d'être le seul hélicoïde dont les lignes de courbures sont les méridiennes (théorème de Bianchi, cf. [gray] p. 483).

Ci-contre, rotation autour de son axe d'une demi-surface de Dini, et modèle en plâtre issu de ce site.

Voir aussi la surface de Kuen, autre surface à courbure négative constante.
 
surface suivante surface précédente courbes 2D courbes 3D surfaces fractals polyèdres

© Robert FERRÉOL  2018